NATURAL MOTION DENSITY OF ELASTIC SHELLS
UNDER INTENSIVE DYNAMIC LOADING

V. M. Kornev and A, V., Markin UDC 624.074.4

The question of the natural motion density in dynamics problems of elastic shells is con-
sidered. Motions are studied for which an exponential growth in amplitude with time occurs.
The number of natural motions incident in a given range of variation of the exponent is com-
puted by using an idea of R. Courant. The governing natural motions and condensation points
at which the natural motion density tends to infinity are found. The condensation points and
governing motions are compared in specific examples.

A natural mode different from the first [1] possesses the greatest rate of growth of deflections for a
shell subjected to an intensive dynamic load exceeding the Euler load. The shell deflections tend to infinity
with the lapse of time [1, 2]. Finite deformations are developed within a finite time interval in real struc-
tures. When the initial system with an infinite number of degrees of freedom in a finite segment approaches
a system with a finite number of degrees of freedom, it is necessary to take account of the natural motion
density [3].

Let us consider a rectangular shell 0 = x = a, 0 = y =< b, hinge-supported along‘the sides, under
zero initial conditions. In the dimensionless variables

=z, p=y'a, 0 L2 <1, 0 <y < ble, a=Ry

the motion of a thin-walled elastic shell with constant radii of curvature is described by an equation [4] of
the following type, where the subscripts on the x and y have been omitted:

e2AAAAD - A, A D L 2AN (0D + Dyy) + REPOETAAD, = f(z, )y (1)
e? =h¥12(1— % R{, ».=hNJRN,,
Ay = (70%/02* - 9*/0y?), v = R/R,,
v=N\,/N, Ny=ERR™.
Here £? is a small parameter, A is the overload coefficient, x, y are Cartesian coordinates, ® (x,y, 1)
is the resolving function, f(x, y) is a function determined by small perturbations, h is the thickness, Ry, R,
are the shell radii of curvature, Ny, N, are normal forces in the middle surface along the x, y axes, re-

spectively, N* is the critical Euler load, v, E are the Poisson ratio and Young's modulus, p is the material
density per unit shell surface, and t is the time.

The exact solution of the problem for a hinge-supported shell can be represented as

D= : Gun (f) sin kpzsin kpy, kp = mug ky = hﬂa/b' (2)
nn
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The equation obtained for a hinge-supported shell is an asymptotic solution of the problem under ar-
bitrary boundary conditions [4].

Substituting (2) into (1), we obtain an equation for qu,n (t) after appropriate manipulations:
q’rlnn (& — @Zanmn (2) = finn; 3)

G = = €2 A5, - R 1 — (k5 + ko) (5, - 272 4 Mok 4 K3 (4)

The solution of (3) depends on the values which the coefficient o2, takes on. For o, < 0 Eq. (3) describes
a vibrational process; for a%nn = 0 the process is linear growth of the amplitude q,,,, with time. Only the
case a%nn> 0, will later be considered, i.e., motions for which an exponential increase in the amplitude

Amn () occurs.

Introducing the new variables r, 6 in the kp,, ky plane,
kr 4+ kp=1% kp=r2cos?®, k2= r2sin%,
from (4) we obtain
e2rd — 2 (v cos? 0 + sin? 0)4- (% cos?0 + sin? 0)2 + ay, = 0. (5)

Let us use the method of Courant [5] in which the number of eigennumbers N (¢) less than a given
number p* is determined approximately as the area of a domain on the m, n plane within which the eigen-
number p is less than the given px. The use of this method for different kinds of problems can be found
in the survey paper [6]. If the ky,, ky plane is taken, then the number N (a%nn) is defined as the ratio be-
tween the area of the domain in the kyy,, ky within which the exponent @, is less than a given Qypx and -
the area of one cell AkyAky,. We therefore obtain

A
N (aha) = R,R2 ™22 (12 (6) d, (6)
6

where 64, 6, are the slopes of the radius vector tangent to the domain. In the asymptotic ease (€ — 0), the
domain under eonsideration will be bounded by the coordinate axes ky,, ky and the curve r (6), while the an-
gles 64, 6, take on the values 64 = 0, 6, = /2,

The presence or absence of contraction points for the function N (a%nn) is established by investigating

the derivative dN (o2,)/do2,,. Substituting r? from (5) into (6) and differentiating with respect to o2, for
the natural motion density we obtain

dc i
[(C1—8E-Fe(l—gghs”

dN (afnn ) RyR,

dag, | Ante[(l— )t — AT (1 — /el

(7)

.

e o
PR

&f,2 = = A (1 — o)/aer — (1 — 7)2 TR < 0 — (1 —)2 ’ (8)

M=ol —y (1—7) , ([20—p—iw(i—wike? | Mol — 72—, }m
(I — 7)2 — A2 (1 — v)2/4e? {[ ]

e

1=Cy, §a= —C,, §=sin®0.
An elliptie integral of the first kind I,

s

V (Ci—HE- eyl —yEl?

enters into (7). Let us find the values of £ which are the poles of the integral T and determine the condensa-
tion points.
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Let 0 = x = v if x > v, then the x and y axes must be interchanged. Then

N Ty} Il 7
) \\ ,J ‘\ | we shall have the considered case. For such X, v the following location of the
J \/{; \ roots Cy, Cy is possible: a) C;> 1;3C;> 0;:b) 1> Cy3Cy > 05¢) Cy > 15 0> Cy;
ol LI N d) 1> Cy; 0> C,.
N ; ! : 2z i
) \ | j ] Let us examine the first case Cy > 1, Cy > 0. By substituting sin% =
) / \ , 2] (C, + 1)£/(¢ + C,), we reduce the integral I to the Legendre form
N : i L3 ,
: J \ | . 2 s
RN o Stcl(ce+1>—(cl+c.z>sin2<p1‘/2'
ol 1 1< N 0
dl (ZZ
Its poles will be the points C; = 0, Cy = —1,
Fig. 1

In the second case 1> Cy, C, > 0 the substitution sin’p = (C; + C,)£/Cy X
(¢ + C,) reduces the integral to the Legendre form :

/2
= ¢ a9

27 ‘5 [(CI‘TCQ)—Cx(1+(,‘2)sjn2¢)]1/2 .

where the poles are the points C; = 1, C; = 0, The two remaining cases C;> 1, 0> Cyand 1> Cy, 0> C,
reduce, respectively, to the integrals I; and I, by using the substitutions
sin®g=(E+C,)/(1+C,)E, ginchz C1EFC)/(Cy+C)E.

The four poles of the integral I have been found: C; =0 or C; =—1; Cy = 1 or C, = 0. Taking (8) into
account, £ =0, £ = 1. Substituting these values of ¢ in the exponential o, we obtain two condensation
points: of = a;for & =0and ¢? = &, for § = 1. If both roots Cy, C, fall into any of the four domains
considered above, then we have one condensation point: £ =0 or £ = 1. Curves 2 and 3 in Fig. 1 corre-
spond to this case. But it can turn out that both roots fall on the boundary of the adjacent domains, for ex-
ample, C, = 0, Cy = 1. Then two condensationpointsexist: £ =0, £ =1 (curve 1 in Fig. 1). If one of the
roots falls within the domain and the other on the boundary, then two condensation points also exist (Fig. 1,
curve 1) which can even coincide (Fig. 1, curves 2 and 3).

Numerical experiments [7] showed that the density function of the natural motions is a sufficiently
complex function for dynamic shell loading. The singularities of this function have been investigated anal-
ytically above.

Following {1], among the motions a?nn let us extract the governing motions a%nn* for which the coef-

ficient in the exponential achieves its greatest value. To find a%nn* we have the system

002,107 = 0,  Oat, /0 = 0,
from which

Urne =2 AW+ EA— )P — [ +E(1— PP (9)
2= [y E(—x) [ — )/ o+ 2 (1—v) |1 —v);

r2=2"1le—2[pLE1—1)].

The expressions (9) yield the governing motions. For £ =0, & =1 the density of the governing motions
tends to infinity in which case a set of motions corresponds to the exponential with maximum exponent.

Let us investigate the influence of condensation points on the nature of the motion during buckling.
The location of the condensation points (Fig. 1) is determined by the shell geometry and the kind of loading.
Hence, the subsequent analysis is based on an analysis of problems of buckling of a shell with a given
geometry and a given kind of loading.

In the case of loading a cylindrical shell x = 0 by a constant intense load in the axial direction v = 0,
for £ = 0, £ = 1 we have the two condensation points &4 and @, from (5), where ®> 0 > ;. Therefore, y
¢ < 0 must be discarded, since only motions with exponent O‘%nn > 0 are studied. Curve 3 in Fig. 1 corre-
sponds to this problem. Substituting x = v=0and{ = 1 into (9), we obtain
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tzi,,_.‘ =a,=4Tg2— 1.
Thus, the governing motions drop into the condensation point, i.e., there is an infinite set of motions with
almost coincident exponents ina small neighborhood of the governing motions for € — 0,

We have an analogous result in the problem of loading a sphere by hydrostatic pressure at x =v=1
(curve 3 in Fig. 1 corresponds to this problem): the governing motions drop into the condensation point,

Curve 1 in Fig. 1 corresponds to the case of loading a cylinder by the transverse pressure x = 0,
v> 1., From (9) we have

Oy =0 = AT TE 1, A2,

The governing motions also drop into the condensation point. The existence of condensation points for the
first two problems has been shown in [3]. A natural motion density function has been constructed in this
work in the general case of dynamic loading of an arbitrary shell. It turns out that this function has two
condensation points. Governing motions have been found and the influence of the natural motion density on
them has been studied. The possibility of replacing a system with an infinite number of degrees of freedom
by a system with one degree of freedom for which the exponent in the exponential is maximal is indicated
in {1]. If the buckling process is studied in a finite interval, sich a replacement is not always possible. In
the case of the governing motions dropping into the condensation peoint it is necessary to take account of the
natural motion density [3].

A natural motion density function having two condensation points has been constructed earlier. Re-
sults of computations confirming the existence of condensation domains in problems of cylindrical shell
loading by an axial force and a transverse pressure are presented in Fig. 2. The calculations were carried
out by means of (5) for given values of the parameters R/h, L/R, and the overloads A. From the values of
azmn obtained only the positive aZ,, > 0 were selected and the maximal azmn* was determined. The curves
in Figs. 2 and 3 were constructed as follows: the interval of o, between 0 and o2, was separated into
10 equal parts, the number of motions a%nn falling into such intervals was computed, and plotted on the
figure. A step function was hence obtained.

The problem of loading a cylinder by an axial force (see Fig. 2) was computed for the following val-
ues of the parameters: curve 1 is for ‘h/R = 1/50, L/R = 2, o, = 4.888, A = 0.0605; curve 2 is for
W/R =1/100, L/R = 2, &2, = 4.894, A = 0.0302. In the case of a cylinder under transverse pressure
(Fig. 3), the following values of the parameters were selected: h/R = 1/400, L/R =2, o ., =0.188, A =
0.0029,

The solution (2) in the form of a sine series is not complete for a closed shell; the solution in a cosine
series must still be taken into account and then the number of motions dropping into the given interval will
be doubled.

It is seen from Fig. 2 that the natural motion density grows with the diminution in the thinness of the
wall. A system with an infinite number of degrees of freedom (2) is approximated well by a system with a
large number of degrees of freedom: in practical computations it is necessary to retain a large number of
terms of the series (2), which is determined by the shell being thin-walled and by the type of loading.

The problem of cylindrical shell loading by transverse pressure theoretically yields coincidence of
the governing motions with the condensation point, but the motion density is negligible (Fig. 3) for a given
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wall thinness on the order of h/R = 1/400 in the overloading range under investigation. In this case, the
infinite series (2) can be approximated by a finite series with several terms or even with one term,
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